On a bivariate spectral relaxation method for unsteady magneto-hydrodynamic flow in porous media

نویسندگان

  • Vusi M Magagula
  • Sandile S Motsa
  • Precious Sibanda
  • Phumlani G Dlamini
چکیده

The paper presents a significant improvement to the implementation of the spectral relaxation method (SRM) for solving nonlinear partial differential equations that arise in the modelling of fluid flow problems. Previously the SRM utilized the spectral method to discretize derivatives in space and finite differences to discretize in time. In this work we seek to improve the performance of the SRM by applying the spectral method to discretize derivatives in both space and time variables. The new approach combines the relaxation scheme of the SRM, bivariate Lagrange interpolation as well as the Chebyshev spectral collocation method. The technique is tested on a system of four nonlinear partial differential equations that model unsteady three-dimensional magneto-hydrodynamic flow and mass transfer in a porous medium. Computed solutions are compared with previously published results obtained using the SRM, the spectral quasilinearization method and the Keller-box method. There is clear evidence that the new approach produces results that as good as, if not better than published results determined using the other methods. The main advantage of the new approach is that it offers better accuracy on coarser grids which significantly improves the computational speed of the method. The technique also leads to faster convergence to the required solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

متن کامل

Numerical Study of Unsteady Flow of Gas Through a Porous Medium By Means of Chebyshev Pseudo-Spectral Method

In this work, we first reformulate the unsteady flow of gas through a porous medium problem in [0,+∞) to a problem in [-1,1] by variable transformation μ = (x-s)/(x+s), and using spectral collocation method based on Chebyshev polynomials to approximate the resulting problem. The comparison of the results obtained by this method with results obtained by other methods shows that this method provi...

متن کامل

Multiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis

In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...

متن کامل

Electro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory

This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...

متن کامل

Analysis of Flow of Nanofluid through a Porous Channel with Expanding or Contracting Walls using Chebychev Spectral Collocation Method

In this work, we applied Chebychev spectral collocation method to analyze the unsteady two-dimensional flow of nanofluid in a porous channel through expanding or contracting walls with large injection or suction. The solutions are used to study the effects of various parameters on the flow of the nanofluid in the porous channel. From the analysis, It was established that increase in expansion r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016